Adaptive Threshold Parameter Estimation with Recursive Differential Grouping for Problem Decomposition

Yuan Sun1,3 Mohammad Nabi Omidvar2 Michael Kirley1 Xiaodong Li3

1School of Computing and Information Systems, University of Melbourne
2School of Computer Science, University of Birmingham
3School of Science, RMIT University

yuan.sun@unimelb.edu.au
yuan.sun@rmit.edu.au

July 17, 2018
Overview

1. Introduction
2. Background and Related Work
3. Adaptive Threshold Estimation for Recursive Differential Grouping
4. Experimental Results
5. Conclusion
Large-scale (High-dimensional) Continuous Optimization Problems are challenging to solve:

- Search space increases exponentially.
- Problem complexity increases greatly.
- The running time of some evolutionary algorithms increases significantly.
Background: Cooperative Co-evolution

Background: Cooperative Co-evolution

Background: Cooperative Co-evolution

Background: Cooperative Co-evolution

Background: Cooperative Co-evolution1

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig}
\caption{Diagram of cooperative co-evolution with variables $x_1, x_2, x_3, x_4, x_5, x_6$ and their optimal values $x_1^*, x_2^*, x_3^*, x_4^*, x_5, x_6$.}
\end{figure}

Background: Cooperative Co-evolution

Background: Recursive Differential Grouping (RDG)\(^2\)

There exists some interaction between two subsets of decision variables \(X_1\) and \(X_2\) if

\[
\Delta X_1 f(x)|_{X_1=x_1^*,X_2=x_2^1} \neq \Delta X_1 f(x)|_{X_1=x_1^*,X_2=x_2^2},
\]

(1)

where

\[
\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).
\]

(2)

Background: Recursive Differential Grouping (RDG)²

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta X_1 f(x)|_{X_1=x_1^*, X_2=x_2^1} \neq \Delta X_1 f(x)|_{X_1=x_1^*, X_2=x_2^2},$$

where

$$\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).$$

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta X_1 f(x)|_{x_1=x_1^*,x_2=x_2^1} \neq \Delta X_1 f(x)|_{x_1=x_1^*,x_2=x_2^2},$$

(1)

where

$$\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).$$

(2)
Background: Recursive Differential Grouping (RDG) \(^2\)

There exists some interaction between two subsets of decision variables \(X_1\) and \(X_2\) if

\[
\Delta X_1 f(x)|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta X_1 f(x)|_{X_1 = X_1^*, X_2 = X_2^2},
\]

(1)

where

\[
\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).
\]

(2)

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta X_1 f(x)|_{X_1=X_1^*, X_2=X_2^1} \neq \Delta X_1 f(x)|_{X_1=X_1^*, X_2=X_2^2},$$

(1)

where

$$\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).$$

(2)
Background: Recursive Differential Grouping (RDG)

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta x_1 f(x)|_{x_1=x_1^*, x_2=x_2^1} \neq \Delta x_1 f(x)|_{x_1=x_1^*, x_2=x_2^2},$$

(1)

where

$$\Delta x_1 f(x) = f(\cdots, x_1 + \Delta x_1, \cdots) - f(\cdots, x_1, \cdots).$$

(2)

There exists some interaction between two subsets of decision variables X_1 and X_2 if
\[\Delta X_1 f(x)|_{X_1 = X_1^*, X_2 = X_2^1} \neq \Delta X_1 f(x)|_{X_1 = X_1^*, X_2 = X_2^2}, \quad (1) \]
where
\[\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \quad (2) \]

There exists some interaction between two subsets of decision variables \(X_1 \) and \(X_2 \) if

\[
\Delta X_1 f(x) \big|_{X_1=X_1^*, X_2=X_2^1} \neq \Delta X_1 f(x) \big|_{X_1=X_1^*, X_2=X_2^2}, \tag{1}
\]

where

\[
\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots). \tag{2}
\]

\[\text{Background: Recursive Differential Grouping (RDG)} \]

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta X_1 f(x)|_{x_1=x_1^*, x_2=x_2^1} \neq \Delta X_1 f(x)|_{x_1=x_1^*, x_2=x_2^2},$$

where

$$\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).$$
Background: Recursive Differential Grouping (RDG)²

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta X_1 f(x)|_{x_1=x_1^*,x_2=x_2^1} \neq \Delta X_1 f(x)|_{x_1=x_1^*,x_2=x_2^2},$$ \hspace{1cm} (1)

where

$$\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).$$ \hspace{1cm} (2)

There exists some interaction between two subsets of decision variables X_1 and X_2 if

$$\Delta X_1 f(x) |_{X_1=\ast_1, X_2=\ast_2} \neq \Delta X_1 f(x) |_{X_1=\ast_1, X_2=\ast_2},$$

(1)

where

$$\Delta X_1 f(x) = f(\cdots, X_1 + \Delta X_1, \cdots) - f(\cdots, X_1, \cdots).$$

(2)

In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.
1. In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.

2. In practice, if $\lambda \leq \epsilon$, X_1 and X_2 are separable; if $\lambda > \epsilon$, X_1 and X_2 interact.
In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.

In practice,
1. In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.

2. In practice,

![Graph showing λ_{sep} and λ_{max} for various values of λ.]
In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.

In practice,
1. In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.

2. In practice,
1. In theory, if $\lambda = 0$, X_1 and X_2 are separable; if $\lambda > 0$, X_1 and X_2 interact, where $\lambda = |\Delta_1 - \Delta_2|$.

2. In practice,
1. In theory, if \(\lambda = 0 \), \(X_1 \) and \(X_2 \) are separable; if \(\lambda > 0 \), \(X_1 \) and \(X_2 \) interact, where \(\lambda = |\Delta_1 - \Delta_2| \).

2. In practice, if \(\lambda \leq \epsilon \), \(X_1 \) and \(X_2 \) are separable; if \(\lambda > \epsilon \), \(X_1 \) and \(X_2 \) interact.
The RDG method estimates a threshold value based on the magnitude of the objective values:

$$\epsilon := \alpha \cdot \min \left\{ |f(x_1)|, \cdots, |f(x_k)| \right\},$$ \hspace{1cm} (3)

where x_1, \cdots, x_k are k randomly generated candidate solutions, and α is the control coefficient \(^3\).

The RDG method estimates a threshold value based on the magnitude of the objective values:

\[
\epsilon := \alpha \cdot \min \left\{ |f(x_1)|, \cdots, |f(x_k)| \right\},
\]

(3)

where \(x_1, \cdots, x_k\) are \(k\) randomly generated candidate solutions, and \(\alpha\) is the control coefficient \(^3\).

Limitations:

1. Lack of theoretical foundation.

The RDG method estimates a threshold value based on the magnitude of the objective values:

$$
\epsilon := \alpha \cdot \min \left\{ |f(x_1)|, \ldots, |f(x_k)| \right\},
$$

where x_1, \ldots, x_k are k randomly generated candidate solutions, and α is the control coefficient.

Limitations:

1. Lack of theoretical foundation.
2. Non-trivial to select an appropriate value for α.

Background: Parameter (Threshold) Setting for RDG

The RDG method estimates a threshold value based on the magnitude of the objective values:

\[\epsilon := \alpha \cdot \min \{ |f(x_1)|, \ldots, |f(x_k)| \} \tag{3} \]

where \(x_1, \ldots, x_k \) are \(k \) randomly generated candidate solutions, and \(\alpha \) is the control coefficient \(^3\).

Limitations:

1. Lack of theoretical foundation.
2. Non-trivial to select an appropriate value for \(\alpha \).
3. Insufficient to deal with problems with imbalanced components.

The round-off errors involved in the calculation of the non-linearity term \(\lambda = |(f(x_{l,l}) - f(x_{u,l})) - (f(x_{l,m}) - f(x_{u,m}))| \) come from two sources:

\[\hat{\Delta}_1 = \hat{f}(x_{l,l}) - \hat{f}(x_{u,l}) = (\hat{f}(x_{l,l}) - \hat{f}(x_{u,l})) (1 + \delta_1) \]
\[\hat{\Delta}_2 = \hat{f}(x_{l,m}) - \hat{f}(x_{u,m}) = (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \delta_2) \]

where \(|\delta_1|, |\delta_2|, |\delta_3| < \mu_M \).

\[\hat{\lambda} = |\hat{\Delta}_1 - \hat{\Delta}_2| = |(\hat{f}(x_{l,l}) - \hat{f}(x_{u,l})) (1 + \delta_1)(1 + \delta_3) - (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \delta_2)(1 + \delta_3)| \]

\(^4\hat{\Delta}\) denotes the floating-point number of \(\Delta \); \(\oplus \) denotes floating-point substraction; \(\mu_M \) is a machine dependent constant (\(\mu_M = 2^{-53} \) in MATLAB).
The round-off errors involved in the calculation of the non-linearity term
\[\lambda = \left| (f(x_{l,l}) - f(x_{u,l})) - (f(x_{l,m}) - f(x_{u,m})) \right| \] come from two sources:

S1: the arithmetic floating-point subtraction between fitness values \(f(x) \).

\(^4 \hat{\Delta} \) denotes the floating-point number of \(\Delta \); \(\ominus \) denotes floating-point substraction; \(\mu_M \) is a machine dependent constant (\(\mu_M = 2^{-53} \) in MATLAB).
The round-off errors involved in the calculation of the non-linearity term
\[\lambda = \left| (f(x_l, l) - f(x_u, l)) - (f(x_l, m) - f(x_u, m)) \right| \]
come from two sources:

S1: the arithmetic floating-point subtraction between fitness values \(f(x) \).

S2: the calculation of the fitness values \(f(x) \).

\(\hat{\Delta} \) denotes the floating-point number of \(\Delta \); \(\ominus \) denotes floating-point substraction; \(\mu_M \) is a machine dependent constant (\(\mu_M = 2^{-53} \) in MATLAB).
Adaptive Threshold Estimation: Round-off Errors (S1)

The round-off errors involved in the calculation of the non-linearity term \(\lambda = \left| (f(x_{l,l}) - f(x_{u,l})) - (f(x_{l,m}) - f(x_{u,m})) \right| \) come from two sources:

S1: the arithmetic floating-point subtraction between fitness values \(f(x) \).

S2: the calculation of the fitness values \(f(x) \).

Round-off Errors (S1):

\[
\hat{\Delta}_1 = \hat{f}(x_{l,l}) \ominus \hat{f}(x_{u,l}) = (\hat{f}(x_{l,l}) - \hat{f}(x_{u,l}))(1 + \delta_1), \quad \text{where } |\delta_1| < \mu_M;^4
\]

^4 \(\hat{\Delta} \) denotes the floating-point number of \(\Delta \); \(\ominus \) denotes floating-point substraction; \(\mu_M \) is a machine dependent constant (\(\mu_M = 2^{-53} \) in MATLAB).
Adaptive Threshold Estimation: Round-off Errors (S1)

The round-off errors involved in the calculation of the non-linearity term $\lambda = \left| (f(x_{l,l}) - f(x_{u,l})) - (f(x_{l,m}) - f(x_{u,m})) \right|$ come from two sources:

S1: the arithmetic floating-point subtraction between fitness values $f(x)$.

S2: the calculation of the fitness values $f(x)$.

Round-off Errors (S1):

$$\hat{\Delta}_1 = \hat{f}(x_{l,l}) \ominus \hat{f}(x_{u,l}) = (\hat{f}(x_{l,l}) - \hat{f}(x_{u,l}))(1 + \delta_1), \text{ where } |\delta_1| < \mu_M;$$ \hspace{1cm} (4)

$$\hat{\Delta}_2 = \hat{f}(x_{l,m}) \ominus \hat{f}(x_{u,m}) = (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \delta_2), \text{ where } |\delta_2| < \mu_M;$$ \hspace{1cm} (5)

$\hat{\Delta}$ denotes the floating-point number of Δ; \ominus denotes floating-point substraction; μ_M is a machine dependent constant ($\mu_M = 2^{-53}$ in MATLAB).
Adaptive Threshold Estimation: Round-off Errors (S1)

The round-off errors involved in the calculation of the non-linearity term

$$\lambda = \left| (f(x_{l,l}) - f(x_{u,l})) - (f(x_{l,m}) - f(x_{u,m})) \right|$$

come from two sources:

S1: the arithmetic floating-point subtraction between fitness values $$f(x)$$.
S2: the calculation of the fitness values $$f(x)$$.

Round-off Errors (S1):

$$\hat{\Delta}_1 = \hat{f}(x_{l,l}) \ominus \hat{f}(x_{u,l}) = (\hat{f}(x_{l,l}) - \hat{f}(x_{u,l}))(1 + \delta_1), \text{ where } |\delta_1| < \mu_M; \quad (4)$$

$$\hat{\Delta}_2 = \hat{f}(x_{l,m}) \ominus \hat{f}(x_{u,m}) = (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \delta_2), \text{ where } |\delta_2| < \mu_M; \quad (5)$$

$$\hat{\lambda} = |\hat{\Delta}_1 \ominus \hat{\Delta}_2| = |(\hat{\Delta}_1 - \hat{\Delta}_2)(1 + \delta_3)| = |(\hat{f}(x_{l,l}) - \hat{f}(x_{u,l}))(1 + \delta_1)(1 + \delta_3) - (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \delta_2)(1 + \delta_3)|, \text{ where } |\delta_1|, |\delta_2|, |\delta_3| < \mu_M. \quad (6)$$

$${}^4\hat{\Delta} \text{ denotes the floating-point number of } \Delta; \ominus \text{ denotes floating-point substraction; } \mu_M \text{ is a machine dependent constant (} \mu_M = 2^{-53} \text{ in MATLAB}).$$
Theorem

Given a floating-point number system that satisfies IEEE 754 Standard such that \(|\delta_i| < \mu_M\), and \(k\mu_M < 1\), we have:

\[
\prod_{i=1}^{k} (1 + \delta_i)^{e_i} = 1 + \theta_k, \text{ where } |\theta_k| \leq \frac{k\mu_M}{1 - k\mu_M} := \gamma_k \text{ and } e_i = \pm 1. \tag{7}
\]

\(^a\)Corless R M, Fillion N. A graduate introduction to numerical methods[J]. AMC, 2013, 10: 12, Springer.

Example: \((1 + \delta_1)(1 + \delta_3) = (1 + \theta_2)\), where \(|\theta_2| \leq \gamma_2\).
Theorem

Given a floating-point number system that satisfies IEEE 754 Standard such that $|\delta_i| < \mu_M$, and $k\mu_M < 1$, we have:

$$\prod_{i=1}^{k}(1 + \delta_i)^{e_i} = 1 + \theta_k, \text{ where } |\theta_k| \leq \frac{k\mu_M}{1 - k\mu_M} := \gamma_k \text{ and } e_i = \pm 1.$$ \hspace{1cm} (7)

Example: $(1 + \delta_1)(1 + \delta_3) = (1 + \theta_2)$, where $|\theta_2| \leq \gamma_2$.

Estimating an upper bound for $S1$:

$$\hat{\lambda} = |(\hat{f}(x_{l,l}) - \hat{f}(x_{u,l}))(1 + \theta_2) - (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \theta'_2)|,$$

where $|\theta_2| \leq \gamma_2$ and $|\theta'_2| \leq \gamma_2$. \hspace{1cm} (8)

\text{Corless R M, Fillion N. A graduate introduction to numerical methods[J].}
AMC, 2013, 10: 12, Springer.
Adaptive Threshold Estimation: Round-off Errors (S2)

Assumption 1: The number of floating-point operations (Φ) involved in the calculation of a black-box objective function is in the order of $\Theta(n)$, where n is the dimensionality of the objective function5:

$$\Phi \approx n.$$ \hspace{1cm} (9)

Adaptive Threshold Estimation: Round-off Errors (S2)

Assumption 1: The number of floating-point operations (\(\Phi\)) involved in the calculation of a black-box objective function is in the order of \(\Theta(n)\), where \(n\) is the dimensionality of the objective function:\(^5\)

\[
\Phi \approx n.
\]

(9)

Assumption 2: The round-off error grows with the square root of the number of floating-point operations (\(\Phi\)) involved in a calculation:\(^6\):

\[
k \approx \sqrt{\Phi}.
\]

(10)

Adaptive Threshold Estimation: Round-off Errors (S2)

Assumption 1: The number of floating-point operations (Φ) involved in the calculation of a black-box objective function is in the order of $\Theta(n)$, where n is the dimensionality of the objective function5:

$$\Phi \approx n.$$ \hspace{1cm} (9)

Assumption 2: The round-off error grows with the square root of the number of floating-point operations (Φ) involved in a calculation6:

$$k \approx \sqrt{\Phi}.$$ \hspace{1cm} (10)

Estimating an upper bound for S2:

$$\hat{f}(\mathbf{x}) = (1 + \theta \sqrt{n})f(\mathbf{x}), \text{ where } |\theta \sqrt{n}| \leq \gamma \sqrt{n}.$$ \hspace{1cm} (11)

Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off errors associated with the calculation of the non-linearity term λ is given by

$$
|\lambda - \hat{\lambda}| \leq \gamma \sqrt{n+2} \left(|f(x_{l,l})| + |f(x_{u,l})| + |f(x_{l,m})| + |f(x_{u,m})| \right).
$$

(12)
Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off errors associated with the calculation of the non-linearity term λ is given by

$$|\lambda - \hat{\lambda}| \leq \gamma \sqrt{n+2} (|f(x_{l,l})| + |f(x_{u,l})| + |f(x_{l,m})| + |f(x_{u,m})|). \quad (12)$$

Proof.

Substitute $\hat{f}(x) = (1 + \theta \sqrt{n})f(x)$ into

$$\hat{\lambda} = \left| (\hat{f}(x_{l,l}) - \hat{f}(x_{u,l}))(1 + \theta_2) - (\hat{f}(x_{l,m}) - \hat{f}(x_{u,m}))(1 + \theta_2') \right|. \quad (13)$$
Adaptive Threshold Estimation: An Upper Bound

Theorem

Under Assumption 1 and Assumption 2, an upper bound on the round-off errors associated with the calculation of the non-linearity term λ is given by

$$|\lambda - \hat{\lambda}| \leq \gamma \sqrt{n+2} \left(|f(x_l,l)| + |f(x_u,l)| + |f(x_l,m)| + |f(x_u,m)| \right).$$

(12)

Proof.

Substitute $\hat{f}(x) = (1 + \theta \sqrt{n})f(x)$ into

$$\hat{\lambda} = \left| (\hat{f}(x_l,l) - \hat{f}(x_u,l))(1 + \theta_2) - (\hat{f}(x_l,m) - \hat{f}(x_u,m))(1 + \theta'_2) \right|.$$

(13)

Adaptive Threshold:

$$\epsilon := \gamma \sqrt{n+2} \left(|f(x_l,l)| + |f(x_u,l)| + |f(x_l,m)| + |f(x_u,m)| \right).$$

(14)

Variables are regarded as interacting if $\hat{\lambda} > \epsilon$, and separable if $\hat{\lambda} \leq \epsilon$.
Experimental Results: Decomposition Comparison

Table: The decomposition results of the RDG2, RDG (with $\alpha = 10^{-12}$) and DG2 methods when used to decompose the CEC'2013 benchmark problems. “a” denotes the decomposition accuracy; “FEs” denotes the function evaluations used.

<table>
<thead>
<tr>
<th>Func</th>
<th>RDG2</th>
<th>RDG ($\alpha = 10^{-12}$)</th>
<th>DG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_7</td>
<td>100%</td>
<td>9.81e+03</td>
<td>100%</td>
</tr>
<tr>
<td>f_8</td>
<td>80.0%</td>
<td>1.91e+04</td>
<td>80.0%</td>
</tr>
<tr>
<td>f_{10}</td>
<td>100%</td>
<td>1.93e+04</td>
<td>82.7%</td>
</tr>
<tr>
<td>f_{11}</td>
<td>100%</td>
<td>1.93e+04</td>
<td>10.0%</td>
</tr>
</tbody>
</table>
Experimental Results: Decomposition Details (f_{11})
Experimental Results: Decomposition Details (f_{11})

\[\hat{\lambda}_{\text{int}} \]

\[\hat{\lambda}_{\text{max}} \]

\[\hat{\lambda}_{\text{sep}} \]
Experimental Results: Decomposition Details (f_{11})

- $\hat{\lambda}_{int}^{0.25}$
- ϵ_{RDG2}
- $\hat{\lambda}_{sep}^{max}$

Graph showing the values of $\hat{\lambda}_{int}^{0.25}$, ϵ_{RDG2}, and $\hat{\lambda}_{sep}^{max}$ over a range of indices from 1 to 20.
Experimental Results: Decomposition Details (f_{11})

Yuan Sun (University of Melbourne)
Adaptive Threshold Estimation with RDG
July 17, 2018 13 / 23
Experimental Results: Decomposition Details (f_8)

Yuan Sun (University of Melbourne)

Adaptive Threshold Estimation with RDG

July 17, 2018 14 / 23
Experimental Results: Decomposition Details (f_8)

\[\hat{\lambda}_{int}^{0.25}, \hat{\lambda}_{sep}^{max} \]
Experimental Results: Decomposition Details (f_8)
Experimental Results: Optimization Comparison

Table: The optimization results of RDG2, RDG and DG2 when embedded into a CC framework to solve CEC’2013 benchmark problems (Wilcoxon rank-sum tests).

<table>
<thead>
<tr>
<th>Func</th>
<th>Stats</th>
<th>RDG2</th>
<th>RDG</th>
<th>DG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_7</td>
<td>median</td>
<td>3.12e-19</td>
<td>2.93e-20</td>
<td>1.00e+03</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>4.04e-16</td>
<td>8.11e-17</td>
<td>1.05e+03</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>1.48e-15</td>
<td>2.17e-16</td>
<td>2.78e+02</td>
</tr>
<tr>
<td>f_8</td>
<td>median</td>
<td>8.15e+06</td>
<td>8.26e+06</td>
<td>3.56e+07</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>8.70e+06</td>
<td>8.50e+06</td>
<td>3.84e+07</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>3.61e+06</td>
<td>2.91e+06</td>
<td>1.08e+07</td>
</tr>
<tr>
<td>f_{10}</td>
<td>median</td>
<td>9.05e+07</td>
<td>9.05e+07</td>
<td>9.05e+07</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>9.10e+07</td>
<td>9.10e+07</td>
<td>9.13e+07</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>1.30e+06</td>
<td>1.29e+06</td>
<td>1.50e+06</td>
</tr>
<tr>
<td>f_{11}</td>
<td>median</td>
<td>2.81e+03</td>
<td>1.68e+07</td>
<td>1.55e+05</td>
</tr>
<tr>
<td></td>
<td>mean</td>
<td>8.68e+03</td>
<td>1.67e+07</td>
<td>2.47e+05</td>
</tr>
<tr>
<td></td>
<td>std</td>
<td>1.24e+04</td>
<td>1.61e+06</td>
<td>2.36e+05</td>
</tr>
</tbody>
</table>
Figure: The convergence curves of the RDG2, RDG and DG2 methods when embedded into the CC framework to solve the CEC’2013 f_{11}.
Conclusion and Future Work

Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.

Future Work

- Systematically investigate the correlation between the non-linearity term for interacting variables and the weight of the components.
- Generate a more effective decomposition for large-scale problems with overlapping components.
Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.
- Showed that the upper bound was able to be used as the threshold value to identify variable interactions across a wide range of benchmark problems.

Future Work

- Systematically investigate the correlation between the non-linearity term for interacting variables and the weight of the components.
- Generate a more effective decomposition for large-scale problems with overlapping components.
Conclusion and Future Work

1 Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.
- Showed that the upper bound was able to be used as the threshold value to identify variable interactions across a wide range of benchmark problems.

2 Future Work

- Systematically investigate the correlation between the non-linearity term for interacting variables and the weight of the components.
Conclusion

- Derived an upper bound on the computational round-off errors involved in calculating the non-linearity term for RDG.
- Showed that the upper bound was able to be used as the threshold value to identify variable interactions across a wide range of benchmark problems.

Future Work

- Systematically investigate the correlation between the non-linearity term for interacting variables and the weight of the components.
- Generate a more effective decomposition for large-scale problems with overlapping components.
Thank You! & Questions?
Interaction Structure

\[x_1, x_2, x_3, x_4, x_5 \]

\[\Delta_1 \neq \Delta_2 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[x_2 \]
\[x_1 \quad x_3 \]
\[x_4 \quad x_5 \]

\[\Delta_1 \neq \Delta_2 \]

Yuan Sun (University of Melbourne)
Adaptive Threshold Estimation with RDG
July 17, 2018
Back-up: Decomposition Process of RDG

Interaction Structure

- X_2
- X_1
- X_3

Decomposition Process

- X_1
- X_2, X_3, X_4, X_5

Yuan Sun (University of Melbourne)
Adaptive Threshold Estimation with RDG
July 17, 2018 20 / 23
Back-up: Decomposition Process of RDG

Interaction Structure

- x_2
- x_1
- x_3
- x_4
- x_5

Decomposition Process

- $\Delta_1 \neq \Delta_2$
- $x_1 \rightarrow x_2, x_3, x_4, x_5$
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[x_1 \]

\[x_2, x_3, x_4, x_5 \]

\[x_2, x_3 \]

\[x_4, x_5 \]

Yuan Sun (University of Melbourne)
Adaptive Threshold Estimation with RDG
July 17, 2018 20 / 23
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[\Delta_1 = \Delta_2 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

$\Delta_1 \neq \Delta_2$

$\Delta_1 = \Delta_2$

$\Delta_1 \neq \Delta_2$
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[\Delta_1 = \Delta_2 \]

\[\Delta_1 \neq \Delta_2 \]

\[\Delta_1 = \Delta_2 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[\Delta_1 = \Delta_2 \]

Yuan Sun (University of Melbourne)
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[x_1, x_2 \rightarrow x_3, x_4, x_5 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

$x_1, x_2 \Rightarrow \Delta_1 \neq \Delta_2 \Rightarrow x_3, x_4, x_5$

Yuan Sun (University of Melbourne)
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[\Delta_1 = \Delta_2 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]

\[\Delta_1 = \Delta_2 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[x_1, x_2 \]
\[\Delta_1 \neq \Delta_2 \]
\[x_3 \]

\[x_1, x_2 \]
\[\Delta_1 = \Delta_2 \]
\[x_3 \]
\[x_4, x_5 \]

\[x_1, x_2, x_3 \]
\[\Delta_1 = \Delta_2 \]
\[x_4, x_5 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

X₁, X₂, X₃

X₂

X₁
X₃

X₄
X₅

Δ₁ ≠ Δ₂
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

x_1, x_2, x_3

x_1

x_2

x_3

x_4

x_5

$\Delta_1 \neq \Delta_2$

Yuan Sun (University of Melbourne)
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]
Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]
Back-up: Decomposition Process of RDG

Interaction Structure

Decomposition Process

\[\Delta_1 \neq \Delta_2 \]
Back-up: Time Complexity of RDG

Time Complexity: $O(n \log(n))$

1. Fully separable problem: $3n \in \Theta(n)$.
2. Fully non-separable problem: $6n \in \Theta(n)$.
3. Partially separable problem: $6n \log_2(n) \in \Theta(n \log(n))$.
4. Overlapping problem $6n \log_2(n) \in \Theta(n \log(n))$.